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The regression characterization scheme

Let X and Y be independent/free random variables with
distributions µ and ν, respectively. Let ψ be such a function that
for (U,V ) = ψ(X ,Y ) and for integer si there exists ci ∈ R such
that

E(Usi |V ) = ci for i = 1,2. (1)

A characterization idiom:
Assume that X and Y are independent/free and (1) holds.
Are distributions of X and Y necessarily µ and ν,
respectively?



Independence/freeness characterization scheme

Let X and Y be independent/free random variables with
distributions µ and ν, respectively. Let ψ be such a function that
U and V , defined by (U,V ) = ψ(X ,Y ), are independent/free.

A characterization idiom:
Assume that X and Y are independent/free and U and V are
also independent/free.
Are distributions of X and Y necessarily µ and ν,
respectively?



Bernstein/Nica independence/freeness
characterization

Let X and Y be independent/free random variables with
common distributions Gaussian/Wigner distribution. Then
U = X − Y and V = X + Y are independent/free.

Characterization: If X and Y are independent/free and
U = X −Y and V = X + Y are independent/free then X and Y
have the common Gaussian/Wugner Wigner distribution.



Regression version of Bernstein/Nica characterization

Let X and Y be independent/free random variables with
common distributions Gaussian (Wigner) distribution.
Since X − Y and X + Y are independent/free

E(X |X + Y ) = X+Y
2 (2)

E(X 2|X + Y ) = (X+Y )2

4 + C (3)

Characterization: If X and Y are independent/free and (2)
and (3) hold then X and Y have the common Gaussian/Wigner
distribution.



Laha-Lukacs/Bożejko-Bryc regression
characterizations of free Meixner laws

Let X and Y be independent/free random variables with zero
means. Assume that

E(X |X + Y ) = α(X + Y ) (4)

Var(X |X + Y ) = C(1 + a(X + Y ) + b(X + Y )2). (5)

Then distributions of X and Y are of free Meixner type:
(a) Gaussian/Wigner if a = b = 0;
(b)Poisson/Marchenko-Pastur if a 6= 0 and b = 0;
(c) free gamma if a2 = 4b > 0;
(d) free negative binomial if b > 0 and a2 > 4b;
(e) free binomial if −min{α, 1− α} ≤ b < 0;
(f) hyperbolic secant (free pure Meiner) if 0 < a2 < 4b.
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Lukacs type characterization and property in free
probability

A corollary of (b) in free probability:

Prop. 3.5 [Bożejko, Bryc (2006)] Let X and Y be free and
X + Y > 0. If

V = X + Y and U = (X + Y )−1/2X (X + Y )−1/2

are free then X and Y have free-Poisson laws.

Then V has also a Poisson law and U has a free binomial
distribution.

Is the converse true?



Lukacs type characterization in classical probability

A corollary of (c) in classical probability:

Th. [Lukacs (1955)]. Let X and Y be independent and positive
random variabes. Then V = X + Y and U = X/(X + Y ) are
independent iff X and Y have gamma laws with the same
scale, i.e. the densities are of the form

f (x) ∝ xp−1e−ax I(0,∞)(x).

A dual version (trivial!): Let U and V be independent random
variables, V > 0, 0 < U < 1. Then X = UV and Y = (1− U)V
are independent iff V has a gamma law and U has a beta law,
where the beta density is of the form

g(x) ∝ xp−1(1− x)q−1I(0,1)(x).



Dual Lukacs type regressions:
Let U and V be independent/free , U supported in [0,1], V
compactly supported in (0,∞). Let

X = UV (X = V 1/2UV 1/2)

and
Y = (1− U)V (Y = V 1/2(1− U)V 1/2).

If for one of pairs (s1, s2) ∈ {(1,2), (1,−1), (−1,−2)}

E(Y si |X ) = ci , i = 1,2,

then V has a gamma)free Poisson) distribution and U has a
beta/(free binomial) distribution.

Bobecka & JW (2002): (1,2), (1,−1), (−1,−2)
Szpojankowski & JW (2014): (1,2),
Szpojankowski (2014): (1,−1), (−1,−2).



Dual Lukacs independence in free probability,
Szpojankowski & JW (2014)

Theorem

Let U and V be free, U supported in (0,1) and V supported
compactly in (0,∞). Define

X = V 1/2UV 1/2 and Y = V 1/2(1− U)V 1/2.

1 If X and Y are free then V and U have (special) free
Poisson and free binomial distributions, respectively.

2 If V and U have (special) free Poisson and free binomial
distributions, respectively, then X and Y are free (with
suitable free Poisson distributions).

The first statement follows from the regression characterization.



Second statement:

By asymptotic freeness (Captaine and Casalis, 2004) there
exist (suitable) n × n independent beta, Un, and Wishart,
Vn, matrices, n ≥ 1, such that for any polynomial Q

lim
n→∞

En(Q(Un,Vn)) = EQ(U,V ),

where En(·) = n−1E tr(·).
For any n ≥ 1 random matrices

Xn = V1/2
n UV1/2

n and Yn = Vn − V1/2
n UV1/2

n

are independent Wishart (e.g. Olkin and Rubin, 1964),
Casalis, Letac, 2004)



Second statement, cont.:

Due to asymptotic freenes of (Xn,Yn) for any polynomial P

lim
n→∞

En P(Xn,Yn) = EP(X ′,Y ′),

where X ′ and Y ′ are free with (suitable) free Poisson
distributions.
Fix any ploynomial P. By traciality there exists a polynomial
Q such that

En P(Xn,Yn) = En Q(Un,Vn)→ EQ(U,V ) = EP(X ,Y )

Consequently, for any polynomial P

EP(X ′,Y ′) = EP(X ′,Y ′).
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Yes, it is true!

The first, combinatorial, proof based on direct calculation of
joint free cumulants of U and V was given in Szpojankowski
(2015). The highlight of the argument was the explicit formula
for joint free cumulants of X and X−1 when X is a free Poisson
variable with the rate λ and the jump size 1:

Ri1+...+im+m(X−1,X , . . . ,X︸ ︷︷ ︸
i1

,X−1,X , . . . ,X︸ ︷︷ ︸
i2

,X−1, . . . ,X−1,X , . . . ,X︸ ︷︷ ︸
im

)

=

{
0, ∃ k : ik > 1,
(−1)i1+...+imRm(X−1), ∀ k , ik ≤ 1

and
Rm(X−1) =

Cm−1
(λ−1)2m−1 ,

where Cn is the nth Catalan number.



A sketch of a new proof based on Theorem 1:

Let Ũ, Ṽ be free with suitable free binomial and free
Poisson distributions. Define

X̃ = Ṽ 1/2UṼ 1/2 and Ỹ = Ṽ − Ṽ 1/2UṼ 1/2.

By the second part of Theorem 1 X̃ and Ỹ are free.
Moreover, distributions of X and X̃ are the same, and
distributions of Y and Ỹ are identical.
For any polynomial P there exists function g such that
P(U,V ) = g(X ,Y ). By defintion of X̃ and Ỹ we have also
P(Ũ, Ṽ ) = g(X̃ , Ỹ ).
For X and Y free Eg(X ,Y ) depends only on distributions
of X and Y . Therefore, Eg(X̃ , Ỹ ) = Eg(X ,Y ).
Consequently, EP(Ũ, Ṽ ) = EP(U,V ).



1 Introduction

2 Lukacsian inspirations

3 A manual of regression characterizations



Direct moment approach
Eg. consider

E(V − V 1/2UV 1/2|V 1/2UV 1/2) = a

and
E((V − V 1/2UV 1/2)2|V 1/2UV 1/2) = b.

Multiply both sides by (V 1/2UV 1/2)n, n ≥ 1, and take E of
both sides. Then, by traciality,

βn − αn+1 = aαn and γn − 2βn+1 + αn+2 = bαn,

where αn = E (VU)n, βn = EV (VU)n, γn = EV 2(VU)n.
For generating functions A, B and C of (αn), (βn) and (γn)

B(z)− A(z)−1
z = aA(z) (6)

and
C(z)− 2z(B(z)−β0)+A(z)−α1z−1

z2 = bA(z). (7)



Direct moment approach, cont.
Let D be the generating function of (δn = EU(VU)n),
T (z) = zD(z), r the r -transform of V and R = r ◦ T . Then

A = 1 + T R, B = TR(1 + R), C = R(R − β0) + R−β0
T .

Plug in such A, B and C into (6) and (7). After some
algebra, with h = TR = MUV , one gets

h(1− αT ) = λαT , (8)

and
zh(z) + z = λαT (z)

a(αT (z)−1)+λα . (9)

(8) yields r(z) = λα
1−αz , i.e. V has the free Poisson law.

Then both (8) and (9) allow to identify ψUV := h−1 and thus
the S-transform

SUV (z) = (λα− a + αz)−1.

Since SUV = SU SV and SUV , SV are known, SU is
identified as the S-transform of free a beta law.



Subordination approach

Orignally proposed in Ejsmont, Franz & Szpojankowski (2017).
Here we apply it to dual regressions with (s1, s2) = (1,−1):

E(V − V 1/2UV 1/2|V 1/2UV 1/2) = a

and
E((V − V 1/2UV 1/2)−1|V 1/2UV 1/2) = c.

By subordination for ψW (z) := zW (1− zW )−1 there exist
functions ω1 and ω2 such that

E(ψV 1/2UV 1/2 (z)|V ) = ψV (ω1(z)) and E(ψU1/2VU1/2 (z)|U) = ψU(ω2(z)).

Since MW (z) = EψW (z) we have

MUV (z) = MV (ω1(z)) = MU(ω2(z)).



Subordination technique
Multiply both sides of regressions by ψV 1/2UV 1/2(z) and
apply E together with traciality to get

K := E (1− U)V1/2ψV1/2UV1/2(z)V1/2 = aMUV (z),

L := E (1− U)−1V−1/2ψV1/2UV1/2(z)V−1/2 = bMUV (z)

Note the algebraic identity

W−1/2ψW1/2TW1/2 (z)W−1/2 = zT1/2ψT1/2WT1/2 (z)T1/2 + zT. (10)

Plug (10) with (W ,T ) := (U,V ) into K and with
(W ,T ) := (V ,U) into L:

K = E (1− U)U−1/2ΨU1/2VU1/2(z)U−1/2 − zE (1− U)V ,

L = zE (1− U)−1U1/2ΨU1/2VU1/2(z)U1/2 + zEU(1− U)−1.



Subordination technique, cont.
Conditioning with respect to U and using subordination we
finally get (α = EψU(1)) ω2(z) + (ω2(z)− 1)MU(ω2(z)) = az(MU(ω2(z)) + 1),

z(MU(ω2(z))− α) = b(ω2(z)− 1)MU(ω2(z)).
(11)

For HU = M−1
U and HUV = M−1

UV we get
a(1 + s)HUV (s) = (1 + s)HU(s)− s,

(s − α)HUV (s) = bs(HU(s)− 1).

Solving this system gives the S-transforms
SU(s) = 1+s

s HU(s) = 1 + ab
α+ab+(ab−1)s ,

SUV (s) = 1+s
s HUV (s) = b

α+ab+(ab−1)s .

Finally, SV follows from SUV = SUSV .



A difficulty in regressins with (s1, s2) = (−1,−2)
Consider

E((V 1/2(1− U)V 1/2)−1|V 1/2UV 1/2) = b,

E((V 1/2(1− U)V 1/2)−2|V 1/2UV 1/2) = c.
(12)

From the second condition in (12)

N := E (1−U)−1V−1(1−U)−1V−1/2ψV1/2UV1/2V−1/2 = cMUV .
(13)

Identity (10) with (W ,T ) = (V ,U) gives

N =zEV−1(1− U)−1U1/2ψU1/2VU1/2 (z)U1/2(1− U)−1

+ zEV−1(1− U)−2U

=zEV−1E((1− U)−1U1/2ψU1/2VU1/2 (z)U1/2(1− U)−1|V)

+ zEV−1(1− U)−2U.



Boolean cumulants to rescue
Boolean cumulants help in calculating this conditional
exepectation:

E((1− U)−1U1/2ψU1/2VU1/2(z)U1/2(1− U)−1|V )

= B2(z) + zB2
1(z)(1 + ψV (ω1(z))),

where
B1(z) = ηU(ω2(z))−ηU(1)

ω2(z)−1 E (1− U)−1,

B2(z) =
ω2(z)[ηU(ω2(z))−ηU(1)−(ω2(z)−1)η′U(1)]

(ω2(z)−1)2 E2(1− U)−1,

and ηU = MU
1+MU

is the generating function of the sequence
of Boolean cumulants of U.
Thus (13) assumes the form(

z
b(ω2−1)

)2 MU(ω2)−α
MU(ω2)+1 [bω2 − z(MU(ω2)− α)] b2 (14)

= cz
(
α z

b(ω2−1) + MU(ω2)
)
.



Final touch

The first regression condition, see the second equation of
(11) in the previous regression problem, leads to

z
b(ω2−1) = MU(ω2)

MU(ω2)−α . (15)

Plugging (15) into (14) gives

ω2 + (ω2 − 1)MU(ω2) = c
b3 z(MU(ω2) + 1). (16)

Thus the system of equations (16) and (15) is the same as
(11) with a := c

b3 .



Mysteries

THE SAME regression characterizations
in classical and free probability

In Lukacs regressions
free binomial≡beta

free Poisson≡gamma
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