Regression characterizations in free and classical probability - a mysterious parallel

Jacek Wesołowski

Wydział Matematyki i Nauk Informacyjnych
Politechnika Warszawska

HARTMAN Special Seminar on Harmonic Analysis Wrocław, 10-11 May 2019

Plan

(1) Introduction
(2) Lukacsian inspirations
(3) A manual of regression characterizations

(9) Introduction

(2) Lukacsian inspirations
(3) A manual of regression characterizations

The regression characterization scheme

Let X and Y be independent/free random variables with distributions μ and ν, respectively. Let ψ be such a function that for $(U, V)=\psi(X, Y)$ and for integer s_{i} there exists $c_{i} \in \mathbb{R}$ such that

$$
\begin{equation*}
\mathbb{E}\left(U^{s_{i}} \mid V\right)=c_{i} \quad \text { for } \quad i=1,2 \tag{1}
\end{equation*}
$$

A characterization idiom:
Assume that X and Y are independent/free and (1) holds.
Are distributions of X and Y necessarily μ and ν, respectively?

Independence/freeness characterization scheme

Let X and Y be independent/free random variables with distributions μ and ν, respectively. Let ψ be such a function that U and V, defined by $(U, V)=\psi(X, Y)$, are independent/free.

A characterization idiom:
Assume that X and Y are independent/free and U and V are also independent/free.
Are distributions of X and Y necessarily μ and ν, respectively?

Bernstein/Nica independence/freeness characterization

Let X and Y be independent/free random variables with common distributions Gaussian/Wigner distribution. Then $U=X-Y$ and $V=X+Y$ are independent/free.

Characterization: If X and Y are independent/free and $U=X-Y$ and $V=X+Y$ are independent/free then X and Y have the common Gaussian/Wugner Wigner distribution.

Regression version of Bernstein/Nica characterization

Let X and Y be independent/free random variables with common distributions Gaussian (Wigner) distribution. Since $X-Y$ and $X+Y$ are independent/free

$$
\begin{align*}
\mathbb{E}(X \mid X+Y) & =\frac{X+Y}{2} \tag{2}\\
\mathbb{E}\left(X^{2} \mid X+Y\right) & =\frac{(X+Y)^{2}}{4}+C \tag{3}
\end{align*}
$$

Characterization: If X and Y are independent/free and (2) and (3) hold then X and Y have the common Gaussian/Wigner distribution.

Laha-Lukacs/Bożejko-Bryc regression characterizations of free Meixner laws

Let X and Y be independent/free random variables with zero means. Assume that

$$
\begin{align*}
\mathbb{E}(X \mid X+Y) & =\alpha(X+Y) \tag{4}\\
\operatorname{Var}(X \mid X+Y) & =C\left(1+a(X+Y)+b(X+Y)^{2}\right) \tag{5}
\end{align*}
$$

Then distributions of X and Y are of free Meixner type:
(a) Gaussian/Wigner if $a=b=0$;
(b)Poisson/Marchenko-Pastur if $a \neq 0$ and $b=0$;
(c) free gamma if $a^{2}=4 b>0$;
(d) free negative binomial if $b>0$ and $a^{2}>4 b$;
(e) free binomial if $-\min \{\alpha, 1-\alpha\} \leq b<0$;
(f) hyperbolic secant (free pure Meiner) if $0<a^{2}<4 b$.

(1) Introduction

(2) Lukacsian inspirations
(3) A manual of regression characterizations

Lukacs type characterization and property in free probability

A corollary of (b) in free probability:
Prop. 3.5 [Bożejko, Bryc (2006)] Let X and Y be free and $X+Y>0$. If

$$
V=X+Y \quad \text { and } \quad U=(X+Y)^{-1 / 2} X(X+Y)^{-1 / 2}
$$

are free then X and Y have free-Poisson laws.
Then V has also a Poisson law and U has a free binomial distribution.

Is the converse true?

Lukacs type characterization in classical probability

A corollary of (c) in classical probability:
Th. [Lukacs (1955)]. Let X and Y be independent and positive random variabes. Then $V=X+Y$ and $U=X /(X+Y)$ are independent iff X and Y have gamma laws with the same scale, i.e. the densities are of the form

$$
f(x) \propto x^{p-1} e^{-a x} l_{(0, \infty)}(x) .
$$

A dual version (trivial!): Let U and V be independent random variables, $V>0,0<U<1$. Then $X=U V$ and $Y=(1-U) V$ are independent iff V has a gamma law and U has a beta law, where the beta density is of the form

$$
g(x) \propto x^{p-1}(1-x)^{q-1} l_{(0,1)}(x) .
$$

Dual Lukacs type regressions:

Let U and V be independent/free , U supported in $[0,1], V$ compactly supported in $(0, \infty)$. Let

$$
X=U V \quad\left(X=V^{1 / 2} U V^{1 / 2}\right)
$$

and

$$
Y=(1-U) V \quad\left(Y=V^{1 / 2}(1-U) V^{1 / 2}\right)
$$

If for one of pairs $\left(s_{1}, s_{2}\right) \in\{(1,2),(1,-1),(-1,-2)\}$

$$
\mathbb{E}\left(Y^{s_{i}} \mid X\right)=c_{i}, \quad i=1,2
$$

then V has a gamma)free Poisson) distribution and U has a beta/(free binomial) distribution.

Bobecka \& JW (2002): $(1,2),(1,-1),(-1,-2)$ Szpojankowski \& JW (2014): (1, 2), Szpojankowski (2014): $(1,-1),(-1,-2)$.

Dual Lukacs independence in free probability, Szpojankowski \& JW (2014)

Theorem
Let U and V be free, U supported in $(0,1)$ and V supported compactly in $(0, \infty)$. Define

$$
X=V^{1 / 2} U V^{1 / 2} \quad \text { and } \quad Y=V^{1 / 2}(1-U) V^{1 / 2} .
$$

(1) If X and Y are free then V and U have (special) free Poisson and free binomial distributions, respectively.
(2) If V and U have (special) free Poisson and free binomial distributions, respectively, then X and Y are free (with suitable free Poisson distributions).

The first statement follows from the regression characterization.

Second statement:

- By asymptotic freeness (Captaine and Casalis, 2004) there exist (suitable) $n \times n$ independent beta, \mathbf{U}_{n}, and Wishart, \mathbf{V}_{n}, matrices, $n \geq 1$, such that for any polynomial Q

$$
\lim _{n \rightarrow \infty} \mathbb{E}_{n}\left(Q\left(\mathbf{U}_{n}, \mathbf{V}_{n}\right)\right)=\mathbb{E} Q(U, V)
$$

where $\mathbb{E}_{n}(\cdot)=n^{-1} \mathbb{E} \operatorname{tr}(\cdot)$.

- For any $n \geq 1$ random matrices

$$
\mathbf{X}_{n}=\mathbf{V}_{n}^{1 / 2} \mathbf{U} \mathbf{V}_{n}^{1 / 2} \quad \text { and } \quad \mathbf{Y}_{n}=\mathbf{V}_{n}-\mathbf{V}_{n}^{1 / 2} \mathbf{U} \mathbf{V}_{n}^{1 / 2}
$$

are independent Wishart (e.g. Olkin and Rubin, 1964), Casalis, Letac, 2004)

Second statement, cont.:

- Due to asymptotic freenes of $\left(\mathbf{X}_{n}, \mathbf{Y}_{n}\right)$ for any polynomial P

$$
\lim _{n \rightarrow \infty} \mathbb{E}_{n} P\left(\mathbf{X}_{n}, \mathbf{Y}_{n}\right)=\mathbb{E} P\left(X^{\prime}, Y^{\prime}\right)
$$

where X^{\prime} and Y^{\prime} are free with (suitable) free Poisson distributions.

- Fix any ploynomial P. By traciality there exists a polynomial Q such that

$$
\mathbb{E}_{n} P\left(\mathbf{X}_{n}, \mathbf{Y}_{n}\right)=\mathbb{E}_{n} Q\left(\mathbf{U}_{n}, \mathbf{V}_{n}\right) \rightarrow \mathbb{E} Q(U, V)=\mathbb{E} P(X, Y)
$$

- Consequently, for any polynomial P

$$
\mathbb{E} P\left(X^{\prime}, Y^{\prime}\right)=\mathbb{E} P\left(X^{\prime}, Y^{\prime}\right)
$$

Recall:

Prop. 3.5 [Bożejko, Bryc (2006)] Let X and Y be free and $X+Y>0$. If

$$
V=X+Y \quad \text { and } \quad U=(X+Y)^{-1 / 2} X(X+Y)^{-1 / 2}
$$

are free then X and Y have free-Poisson laws.
Then V has also a Poisson law and V has a free binomial distribution.

Is the converse true?

Let X and Y be free with (suitable) free Poisson distributions.
Then V and U are free.

Recall:

Prop. 3.5 [Bożejko, Bryc (2006)] Let X and Y be free and $X+Y>0$. If

$$
V=X+Y \quad \text { and } \quad U=(X+Y)^{-1 / 2} X(X+Y)^{-1 / 2}
$$

are free then X and Y have free-Poisson laws.
Then V has also a Poisson law and V has a free binomial distribution.

Is the converse true?

Theorem
Let X and Y be free with (suitable) free Poisson distributions. Then V and U are free.

Yes, it is true!

The first, combinatorial, proof based on direct calculation of joint free cumulants of U and V was given in Szpojankowski (2015). The highlight of the argument was the explicit formula for joint free cumulants of X and X^{-1} when X is a free Poisson variable with the rate λ and the jump size 1:

$$
\begin{aligned}
& \mathcal{R}_{i_{1}+\ldots+i_{m}+m}(X^{-1}, \underbrace{X, \ldots, X}_{h_{1}}, X^{-1}, \underbrace{X, \ldots, X}_{k_{2}}, X^{-1}, \ldots, X^{-1}, \underbrace{X, \ldots, X}_{i_{m}}) \\
& = \begin{cases}0, & \exists k: i_{k}>1, \\
(-1)^{i_{1}+\ldots+i_{m}} \mathcal{R}_{m}\left(X^{-1}\right), \quad \forall k, i_{k} \leq 1\end{cases}
\end{aligned}
$$

and

$$
\mathcal{R}_{m}\left(X^{-1}\right)=\frac{C_{m-1}}{(\lambda-1)^{2 m-1}},
$$

where C_{n} is the nth Catalan number.

A sketch of a new proof based on Theorem 1:

- Let \tilde{U}, \tilde{V} be free with suitable free binomial and free Poisson distributions. Define

$$
\tilde{X}=\tilde{V}^{1 / 2} U \tilde{V}^{1 / 2} \quad \text { and } \quad \tilde{Y}=\tilde{V}-\tilde{V}^{1 / 2} U \tilde{V}^{1 / 2} .
$$

- By the second part of Theorem $1 \tilde{X}$ and \tilde{Y} are free. Moreover, distributions of X and \tilde{X} are the same, and distributions of Y and \tilde{Y} are identical.
- For any polynomial P there exists function g such that $P(U, V)=g(X, Y)$. By defintion of \tilde{X} and \tilde{Y} we have also $P(\tilde{U}, \tilde{V})=g(\tilde{X}, \tilde{Y})$.
- For X and Y free $\mathbb{E} g(X, Y)$ depends only on distributions of X and Y. Therefore, $\mathbb{E} g(\tilde{X}, \tilde{Y})=\mathbb{E} g(X, Y)$.
- Consequently, $\mathbb{E} P(\tilde{U}, \tilde{V})=\mathbb{E} P(U, V)$.

(1) Introduction

(2) Lukacsian inspirations

(3) A manual of regression characterizations

Direct moment approach

Eg. consider

$$
\mathbb{E}\left(V-V^{1 / 2} U V^{1 / 2} \mid V^{1 / 2} U V^{1 / 2}\right)=a
$$

and

$$
\mathbb{E}\left(\left(V-V^{1 / 2} U V^{1 / 2}\right)^{2} \mid V^{1 / 2} U V^{1 / 2}\right)=b .
$$

- Multiply both sides by $\left(V^{1 / 2} U V^{1 / 2}\right)^{n}, n \geq 1$, and take \mathbb{E} of both sides. Then, by traciality,

$$
\beta_{n}-\alpha_{n+1}=a \alpha_{n} \quad \text { and } \quad \gamma_{n}-2 \beta_{n+1}+\alpha_{n+2}=b \alpha_{n},
$$

where $\alpha_{n}=\mathbb{E}(V U)^{n}, \beta_{n}=\mathbb{E} V(V U)^{n}, \gamma_{n}=\mathbb{E} V^{2}(V U)^{n}$.

- For generating functions A, B and C of $\left(\alpha_{n}\right),\left(\beta_{n}\right)$ and $\left(\gamma_{n}\right)$

$$
\begin{equation*}
B(z)-\frac{A(z)-1}{z}=a A(z) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
C(z)-\frac{2 z\left(B(z)-\beta_{0}\right)+A(z)-\alpha_{1} z-1}{z^{2}}=b A(z) . \tag{7}
\end{equation*}
$$

Direct moment approach, cont.

- Let D be the generating function of $\left(\delta_{n}=\mathbb{E} U(V U)^{n}\right)$, $T(z)=z D(z), r$ the r-transform of V and $R=r \circ T$. Then

$$
A=1+T R, \quad B=T R(1+R), \quad C=R\left(R-\beta_{0}\right)+\frac{R-\beta_{0}}{T} .
$$

- Plug in such A, B and C into (6) and (7). After some algebra, with $h=T R=M_{U V}$, one gets

$$
\begin{equation*}
h(1-\alpha T)=\lambda \alpha T \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
z h(z)+z=\frac{\lambda \alpha T(z)}{a(\alpha T(z)-1)+\lambda \alpha} . \tag{9}
\end{equation*}
$$

- (8) yields $r(z)=\frac{\lambda \alpha}{1-\alpha z}$, i.e. V has the free Poisson law.
- Then both (8) and (9) allow to identify $\psi U V:=h^{-1}$ and thus the S-transform

$$
S_{U V}(z)=(\lambda \alpha-a+\alpha z)^{-1}
$$

- Since $S_{U V}=S_{U} S_{V}$ and $S_{U V}, S_{V}$ are known, S_{U} is identified as the S-transform of free a beta law.

Subordination approach

Orignally proposed in Ejsmont, Franz \& Szpojankowski (2017). Here we apply it to dual regressions with $\left(s_{1}, s_{2}\right)=(1,-1)$:

$$
\mathbb{E}\left(V-V^{1 / 2} U V^{1 / 2} \mid V^{1 / 2} U V^{1 / 2}\right)=a
$$

and

$$
\mathbb{E}\left(\left(V-V^{1 / 2} U V^{1 / 2}\right)^{-1} \mid V^{1 / 2} U V^{1 / 2}\right)=c .
$$

By subordination for $\psi_{W}(z):=z W(1-z W)^{-1}$ there exist functions ω_{1} and ω_{2} such that
$\mathbb{E}\left(\psi_{V^{1 / 2} V^{1 / 2}}(z) \mid V\right)=\psi_{V}\left(\omega_{1}(z)\right)$ and $\mathbb{E}\left(\psi_{U^{1 / 2} V^{1 / 2}}(z) \mid U\right)=\psi_{U}\left(\omega_{2}(z)\right)$.
Since $M_{W}(z)=\mathbb{E} \psi_{W}(z)$ we have

$$
M_{U V}(z)=M_{V}\left(\omega_{1}(z)\right)=M_{U}\left(\omega_{2}(z)\right) .
$$

Subordination technique

- Multiply both sides of regressions by $\psi_{V^{1 / 2} U V^{1 / 2}}(z)$ and apply \mathbb{E} together with traciality to get

$$
\left\{\begin{array}{l}
K:=\mathbb{E}(1-U) \mathbf{V}^{1 / 2} \psi_{\mathbf{V}^{1 / 2} U^{1 / 2}}(\mathbf{z}) \mathbf{V}^{1 / 2}=a M_{U V(z)}, \\
L:=\mathbb{E}(1-U)^{-1} \mathbf{V}^{-1 / 2} \psi_{\mathbf{V}^{1 / 2} U V^{1 / 2}}(\mathbf{z}) \mathbf{V}^{-1 / 2}=b M_{U V(z)}
\end{array}\right.
$$

- Note the algebraic identity

$$
\begin{equation*}
\mathbf{W}^{-1 / 2} \psi_{\mathbf{W}^{1 / 2}} \mathbf{T W}^{1 / 2}(\mathbf{z}) \mathbf{W}^{-1 / 2}=\mathbf{z} \mathbf{T}^{1 / 2} \psi_{\mathbf{T}^{1 / 2}} \mathbf{W} \mathbf{T}^{1 / 2}(\mathbf{z}) \mathbf{T}^{1 / 2}+\mathbf{z T} . \tag{10}
\end{equation*}
$$

- Plug (10) with $(W, T):=(U, V)$ into K and with $(W, T):=(V, U)$ into L :

$$
\left\{\begin{array}{l}
K=\mathbb{E}(1-U) U^{-1 / 2} \Psi_{U^{1 / 2} V U^{1 / 2}}(z) U^{-1 / 2}-z \mathbb{E}(1-U) V \\
L=z \mathbb{E}(1-U)^{-1} U^{1 / 2} \Psi_{U^{1 / 2} V U^{1 / 2}}(z) U^{1 / 2}+z \mathbb{E} U(1-U)^{-1}
\end{array}\right.
$$

Subordination technique, cont.

- Conditioning with respect to U and using subordination we finally get $(\alpha=\mathbb{E} \psi u(1))$

$$
\left\{\begin{array}{l}
\omega_{2}(z)+\left(\omega_{2}(z)-1\right) M_{U}\left(\omega_{2}(z)\right)=a z\left(M_{U}\left(\omega_{2}(z)\right)+1\right), \tag{11}\\
z\left(M_{u}\left(\omega_{2}(z)\right)-\alpha\right)=b\left(\omega_{2}(z)-1\right) M_{U}\left(\omega_{2}(z)\right) .
\end{array}\right.
$$

- For $H_{U}=M_{U}^{-1}$ and $H_{U V}=M_{U V}^{-1}$ we get

$$
\left\{\begin{array}{l}
a(1+s) H_{U V}(s)=(1+s) H_{U}(s)-s \\
(s-\alpha) H_{U V}(s)=b s\left(H_{U}(s)-1\right)
\end{array}\right.
$$

- Solving this system gives the S-transforms

$$
\left\{\begin{array}{l}
S_{U}(s)=\frac{1+s}{s} H_{U}(s)=1+\frac{a b}{\alpha+a b+(a b-1) s} \\
S_{U V}(s)=\frac{1+s}{s} H_{U V}(s)=\frac{b}{\alpha+a b+(a b-1) s}
\end{array}\right.
$$

- Finally, S_{V} follows from $S_{U V}=S_{U} S_{V}$.

A difficulty in regressins with $\left(s_{1}, s_{2}\right)=(-1,-2)$
Consider

$$
\left\{\begin{array}{l}
\mathbb{E}\left(\left(V^{1 / 2}(1-U) V^{1 / 2}\right)^{-1} \mid V^{1 / 2} U V^{1 / 2}\right)=b, \tag{12}\\
\mathbb{E}\left(\left(V^{1 / 2}(1-U) V^{1 / 2}\right)^{-2} \mid V^{1 / 2} U V^{1 / 2}\right)=c .
\end{array}\right.
$$

- From the second condition in (12)

$$
\begin{equation*}
N:=\mathbb{E}(1-U)^{-1} V^{-1}(1-U)^{-1} V^{-1 / 2} \psi_{V^{1 / 2} U V^{1 / 2}} V^{-1 / 2}=c M_{U V} \tag{13}
\end{equation*}
$$

- Identity (10) with $(W, T)=(V, U)$ gives

$$
\begin{aligned}
N= & z \mathbb{E} V^{-1}(1-U)^{-1} U^{1 / 2} \psi_{U^{1 / 2} V U^{1 / 2}}(z) U^{1 / 2}(1-U)^{-1} \\
& +z \mathbb{E} V^{-1}(1-U)^{-2} U \\
= & z \mathbb{E} V^{-1} \mathbb{E}\left((1-U)^{-1} U^{1 / 2} \psi_{\mathbf{U}^{1 / 2} V U^{1 / 2}}(\mathbf{z}) U^{1 / 2}(1-\mathbf{U})^{-1} \mid \mathbf{V}\right) \\
& +z \mathbb{E} V^{-1}(1-U)^{-2} U .
\end{aligned}
$$

Boolean cumulants to rescue

- Boolean cumulants help in calculating this conditional exepectation:

$$
\begin{gathered}
\mathbb{E}\left((1-U)^{-1} U^{1 / 2} \psi_{U^{1 / 2} V U^{1 / 2}}(z) U^{1 / 2}(1-U)^{-1} \mid V\right) \\
=B_{2}(z)+z B_{1}^{2}(z)\left(1+\psi V\left(\omega_{1}(z)\right)\right)
\end{gathered}
$$

where

$$
\begin{gathered}
B_{1}(z)=\frac{\eta_{U}\left(\omega_{2}(z)\right)-\eta_{U}(1)}{\omega_{2}(z)-1} \mathbb{E}(1-U)^{-1} \\
B_{2}(z)=\frac{\omega_{2}(z)\left[\eta_{U}\left(\omega_{2}(z)\right)-\eta_{u}(1)-\left(\omega_{2}(z)-1\right) \eta_{U}^{\prime}(1)\right]}{\left(\omega_{2}(z)-1\right)^{2}} \mathbb{E}^{2}(1-U)^{-1}
\end{gathered}
$$

and $\eta_{U}=\frac{M_{U}}{1+M_{U}}$ is the generating function of the sequence of Boolean cumulants of U.

- Thus (13) assumes the form

$$
\begin{gather*}
\left(\frac{z}{b\left(\omega_{2}-1\right)}\right)^{2} \frac{M_{U}\left(\omega_{2}\right)-\alpha}{M_{U}\left(\omega_{2}\right)+1}\left[b \omega_{2}-z\left(M_{U}\left(\omega_{2}\right)-\alpha\right)\right] b^{2} \tag{14}\\
=c z\left(\alpha \frac{z}{b\left(\omega_{2}-1\right)}+M_{U}\left(\omega_{2}\right)\right)
\end{gather*}
$$

Final touch

- The first regression condition, see the second equation of (11) in the previous regression problem, leads to

$$
\begin{equation*}
\frac{z}{b\left(\omega_{2}-1\right)}=\frac{M_{U}\left(\omega_{2}\right)}{M_{U}\left(\omega_{2}\right)-\alpha} . \tag{15}
\end{equation*}
$$

Plugging (15) into (14) gives

$$
\begin{equation*}
\omega_{2}+\left(\omega_{2}-1\right) M_{u}\left(\omega_{2}\right)=\frac{c}{b^{3}} z\left(M_{U}\left(\omega_{2}\right)+1\right) \tag{16}
\end{equation*}
$$

- Thus the system of equations (16) and (15) is the same as (11) with $a:=\frac{c}{b^{3}}$.
- THE SAME regression characterizations in classical and free probability
- In Lukacs regressions free binomial \equiv beta free Poisson \equiv gamma

References

- Bobecka, K., Wesołowski, J. Three dual regression schemes for the Lukacs theorem. Metrika 56(1) (2002), 43-54.
- Bożejko, M., Bryc, W. On a class of free Lévy laws related to a regression problem. J. Funct. Anal. 236(1) (2006), 59-77.
- Captaine, M., Casalis, M. Asympptotic freeness by generalized moments for Gaussian and Wishart matrices. Application to beta random matrices. Indiana Univ. Math. J. 53(2) (2004), 397-431.
- Casalis, M., Letac, G. The Lukacs-Olkin-Rubin characterization of Wishart distributions on symmetric cones. Ann. Statist. 24(2) (1996), 763-768.
- Ejsmont, W., Franz, U., Szpojankowski, K. Convolution, subordination and characterization problems in non-commutative probability. Indiana Univ. Math. J. (2017).
- Fevrier, M., Mastnak, M., Nica, A., Szpojankowski, K. On the effective use if boolean cumulants in study of free independence. Preprint (2019).
- LAHA, R.G., LUKACS, E. Ona problem connected with quadratic regression. Biometrika 47 (1960), 335-343.
- Lehner, F., Szpojankowski, K. Boolean cumulants and subordination in free probability. Preprint (2019).
- LUKACS, E. A characterization of the gamma distribution. Ann. Math. Statist. 26 (1955), 319-324.
- NICA, A. R-transforms of free joint distributions and non-crossing partitions. J. Funct. Anal 135 (1996), 271-296.
- Szpojankowski, K. Dual Lukacs regression of negative orders for non-cimmutative variables. Inf. Dim. Anal. Quant. Probab. Relat. Top. 17(3) (2014), 1-19.
- Szpojankowski, K. On the Lukacs property for free random variables. Studia Math. 228(1) (2015), 55-72.
- Szpojankowski, K., WesoŁowski, J. Dual Lukacs regressions for non-commutative variables. J. Funct. Anal. 22(2) (2014), 36-54.

